An Evaluation of Deep Learning in the processing of Medical Images

Authors

Anchal Kumari

PhD Scholar, Department of Computer Application, Lovely Professional University, Jalandhar (India)

Vikas Kumar

Senior Research Fellow (PhD), Department of Commerce, Himachal Pradesh University, Shimla (India)

Ankita Kumari

PhD Scholar, Department of Management, NIILM University Kaithal, Haryana (India)

Article Information

DOI: 10.51244/IJRSI.2025.120800212

Subject Category: Education

Volume/Issue: 12/8 | Page No: 2354-2365

Publication Timeline

Submitted: 2025-08-22

Accepted: 2025-08-28

Published: 2025-09-22

Abstract

AI is getting better all the time, especially when it comes to deep learning techniques. This is helping to find, sort, and count patterns in clinical photos. Deep learning is the fastest-growing area of artificial intelligence, and it has been used successfully in many fields, including medicine. There is a short overview of research done in the areas of neuro, brain, retinal, pneumonic, computerized pathology, bosom, heart, breast, bone, stomach, and musculoskeletal. Deep learning networks can be used on massive data to find information, use knowledge, and make predictions based on knowledge. This paper talks about basic information and cutting-edge technologies for medical image processing and analysis that use deep learning. The main goals of this study are to show research on processing medical images and to identify and put into action the main guidelines that are found and talked about.

Keywords

Evaluation ,Deep Learning ,processing ,Medical Images

Downloads

References

1. R. Kaur, H. GholamHosseini, and M. Lindén, “Advanced Deep Learning Models for Melanoma Diagnosis in Computer-Aided Skin Cancer Detection,” Sensors, vol. 25, no. 3, pp. 1–19, 2025, doi: 10.3390/s25030594. [Google Scholar] [Crossref]

2. T. Mahmood, A. Rehman, T. Saba, L. Nadeem, and S. A. O. Bahaj, “Recent Advancements and Future Prospects in Active Deep Learning for Medical Image Segmentation and Classification,” IEEE Access, vol. 11, no. August, pp. 113623–113652, 2023, doi: 10.1109/ACCESS.2023.3313977. [Google Scholar] [Crossref]

3. B. Ozdemir, E. Aslan, and I. Pacal, “Attention Enhanced InceptionNeXt Based Hybrid Deep Learning Model for Lung Cancer Detection,” IEEE Access, vol. 13, no. January, pp. 27050–27069, 2025, doi: 10.1109/ACCESS.2025.3539122. [Google Scholar] [Crossref]

4. A. Ahmed, G. Sun, A. Bilal, Y. Li, and S. A. Ebad, “Precision and efficiency in skin cancer segmentation through a dual encoder deep learning model,” Sci. Rep., vol. 15, no. 1, pp. 1–17, 2025, doi: 10.1038/s41598-025-88753-3. [Google Scholar] [Crossref]

5. Y. Xu, R. Quan, W. Xu, Y. Huang, X. Chen, and F. Liu, “Advances in Medical Image Segmentation: A Comprehensive Review of Traditional, Deep Learning and Hybrid Approaches,” Bioengineering, vol. 11, no. 10, 2024, doi: 10.3390/bioengineering11101034. [Google Scholar] [Crossref]

6. S. R. Ahmed et al., “Deep Learning in Medical Imaging for Early Disease Detection,” Lect. Notes Electr. Eng., vol. 1414 LNEE, pp. 369–381, 2025, doi: 10.1007/978-981-96-5318-8_35. [Google Scholar] [Crossref]

7. K. A. Arun and M. Palmer, “Skin cancer detection using deep learning,” Proc. 2024 10th Int. Conf. Commun. Signal Process. ICCSP 2024, pp. 1712–1717, 2024, doi: 10.1109/ICCSP60870.2024.10543954. [Google Scholar] [Crossref]

8. M. Hajiarbabi, “Skin cancer detection using multi-scale deep learning and transfer learning,” J. Med. Artif. Intell., vol. 6, no. 6, pp. 1–9, 2023, doi: 10.21037/jmai-23-67. [Google Scholar] [Crossref]

9. A. F. SÖNMEZ, S. ÇAKAR, F. CEREZCİ, M. KOTAN, İ. DELİBAŞOĞLU, and G. ÇİT, “Deep Learning-Based Classification of Dermoscopic Images for Skin Lesions,” Sak. Univ. J. Comput. Inf. Sci., vol. 6, no. 2, pp. 114–122, 2023, doi: 10.35377/saucis...1314638. [Google Scholar] [Crossref]

10. A. Shah et al., “A comprehensive study on skin cancer detection using artificial neural network (ANN) and convolutional neural network (CNN),” Clin. eHealth, vol. 6, pp. 76–84, 2023, doi: 10.1016/j.ceh.2023.08.002. [Google Scholar] [Crossref]

11. K. Mridha and M. Uddin, “An Interpretable Skin Cancer Classification Using Optimized Convolutional Neural Network for a Smart Healthcare System,” IEEE Access, vol. 11, no. March, pp. 41003–41018, 2023, doi: 10.1109/ACCESS.2023.3269694. [Google Scholar] [Crossref]

12. E. Pérez and S. Ventura, “A framework to build accurate Convolutional Neural Network models for melanoma diagnosis,” Knowledge-Based Syst., vol. 260, p. 110157, 2023, doi: 10.1016/j.knosys.2022.110157. [Google Scholar] [Crossref]

13. Q. Xia et al., “A comprehensive review of deep learning for medical image segmentation,” Neurocomputing, vol. 613, 2025, doi: 10.1016/j.neucom.2024.128740. [Google Scholar] [Crossref]

14. T. Mazhar et al., “The Role of Machine Learning and Deep Learning Approaches for the Detection of Skin Cancer,” Healthc., vol. 11, no. 3, 2023, doi: 10.3390/healthcare11030415. [Google Scholar] [Crossref]

15. R. Dandu, M. Vinayaka Murthy, and Y. B. Ravi Kumar, “Transfer learning for segmentation with hybrid classification to Detect Melanoma Skin Cancer,” Heliyon, vol. 9, no. 4, p. e15416, 2023, doi: 10.1016/j.heliyon.2023.e15416. [Google Scholar] [Crossref]

16. S. Kumar and A. Dawani, “Deep Learning for Radiology: Improving Diagnostic Accuracy in Medical Imaging,” Spectr. Eng. Manag. Sci., vol. 2, no. December 2024, pp. 517–533, 2024, doi: 10.5281/zenodo.15341712. [Google Scholar] [Crossref]

17. H. P. Bhati, “Deep Learning for Automated Detection of Cancerous Cells in Medical Deep Learning for Automated Detection of Cancerous Cells in Medical Imaging,” no. September, 2024, doi: 10.48047/AFJBS.6.7. [Google Scholar] [Crossref]

18. S. Ma et al., “Deep Learning Approaches for Medical Imaging Under Varying Degrees of Label Availability: A Comprehensive Survey,” no. April, 2025, doi: 10.48550/arXiv.2504.11588. [Google Scholar] [Crossref]

19. T. Pang, P. Li, and L. Zhao, “A survey on automatic generation of medical imaging reports based on deep learning,” Biomed. Eng. Online, vol. 22, no. 1, pp. 1–17, 2023, doi: 10.1186/s12938-023-01113-y. [Google Scholar] [Crossref]

20. K. Song, J. Feng, and D. Chen, “A survey on deep learning in medical ultrasound imaging,” Front. Phys., vol. 12, no. July, pp. 1–21, 2024, doi: 10.3389/fphy.2024.1398393. [Google Scholar] [Crossref]

21. M. Liu, “Application of Image Watermarking Technology Based on Deep Learning in Copyright Protection,” Smart Innov. Syst. Technol., vol. 418 SIST, pp. 73–84, 2025, doi: 10.1007/978-981-97-9124-8_6. [Google Scholar] [Crossref]

22. B. Huang and B. Gao, “Artificial intelligence in medical imaging,” iRADIOLOGY, vol. 2, no. 6, pp. 525–526, 2024, doi: 10.1002/ird3.111. [Google Scholar] [Crossref]

23. J. Wang, S. Wang, and Y. Zhang, “Deep learning on medical image analysis,” CAAI Trans. Intell. Technol., vol. 10, no. 1, pp. 1–35, 2025, doi: 10.1049/cit2.12356. [Google Scholar] [Crossref]

24. X. Jiang, Z. Hu, S. Wang, and Y. Zhang, “Deep Learning for Medical Image-Based Cancer Diagnosis,” Cancers (Basel)., vol. 15, no. 14, 2023, doi: 10.3390/cancers15143608. [Google Scholar] [Crossref]

25. T. Dhar, N. Dey, S. Borra, and R. S. Sherratt, “Challenges of Deep Learning in Medical Image Analysis—Improving Explainability and Trust,” IEEE Trans. Technol. Soc., vol. 4, no. 1, pp. 68–75, 2023, doi: 10.1109/tts.2023.3234203. [Google Scholar] [Crossref]

26. T. R. Dipta, M. S. M. Rabby, T. Ahmed, M. M. H. Chowdhury, M. N. I. Shanto, and M. Khaliluzzaman, “Advancements in Medical Imaging: A Deep Learning Approach for Kidney Disease Classification,” 2024 IEEE Conf. Comput. Appl. Syst. COMPAS 2024, no. April 2025, 2024, doi: 10.1109/COMPAS60761.2024.10796643. [Google Scholar] [Crossref]

27. S. A. Bala, S. O. Kant, and A. G. Yakasai, “Deep Learning In Medical Imaging And Drug Design,” J. Hum. Physiol., vol. 2, no. 2, pp. 32–37, 2021, doi: 10.30564/jhp.v2i2.2683. [Google Scholar] [Crossref]

28. Y. Han, “Deep learning methods and corresponding applications in medical imaging,” Appl. Comput. Eng., vol. 46, no. 1, pp. 79–83, 2024, doi: 10.54254/2755-2721/46/20241106. [Google Scholar] [Crossref]

29. M. Sundarrajan, M. D. Choudhry, J. Biju, S. Krishnakumar, and K. Rajeshkumar, “Enhancing Low-Light Medical Imaging through Deep Learning-Based Noise Reduction Techniques,” Indian J. Sci. Technol., vol. 17, no. 34, pp. 3567–3579, 2024, doi: 10.17485/ijst/v17i34.2489. [Google Scholar] [Crossref]

30. S. E. E. Profile, “Deep learning models for automated medical imaging: accuracy, ethics, and deployment challenges,” no. June, 2025, doi: 10.34218/IJAIDL. [Google Scholar] [Crossref]

31. R. R. Kothinti, “The Role of Deep Learning in Radiology and Medical Imaging: Improving Diagnostic Accuracy,” Int. J. Acad. Res. Dev., no. February, pp. 128–143, 2024. [Google Scholar] [Crossref]

32. M. Blessing, “Integration of 3D Medical Imaging with Deep Learning for Enhanced Segmentation Author : Moses Blessing Date : 25 th Sep 2024 Abstract :,” no. September, 2024. [Google Scholar] [Crossref]

33. J. Kim, J. Hong, and H. Park, “Prospects of deep learning for medical imaging,” Precis. Futur. Med., vol. 2, no. 2, pp. 37–52, 2018, doi: 10.23838/pfm.2018.00030. [Google Scholar] [Crossref]

34. A. Mary, J. Grace, I. Adam, B. Halle, and A. James, “Revolutionizing Emergency Care : Deep Learning Approaches for Automated Detection of Intracranial Hemorrhage in Medical Imaging,” no. November, 2024. [Google Scholar] [Crossref]

35. J. Singh and G. Dhiman, “Systematic Analysis on Deep Learning Approaches for Medical Imaging, Diagnostics, and Neonatal Healthcare,” J. Neonatal Surg., vol. 14, no. 5S, pp. 820–830, 2025, doi: 10.52783/jns.v14.2157. [Google Scholar] [Crossref]

36. T. Berghout, “The Neural Frontier of Future Medical Imaging: A Review of Deep Learning for Brain Tumor Detection,” J. Imaging, vol. 11, no. 1, 2025, doi: 10.3390/jimaging11010002. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles