Submission Deadline-05th September 2025
September Issue of 2025 : Publication Fee: 30$ USD Submit Now
Submission Deadline-04th September 2025
Special Issue on Economics, Management, Sociology, Communication, Psychology: Publication Fee: 30$ USD Submit Now
Submission Deadline-19th September 2025
Special Issue on Education, Public Health: Publication Fee: 30$ USD Submit Now

Projective Geometry Structure of zn* (A Case of n=pqrs)

  • Felix Komu
  • Benard M. Kivunge
  • Fredrick O. Nyamwala
  • 356-363
  • Mar 5, 2025
  • Education

Projective Geometry Structure of zn* (A Case of n=pqrs)

Felix Komu1, Benard M. Kivunge2, Fredrick O. Nyamwala3

1,3Moi University

2Kenyatta University

DOI: https://doi.org/10.51244/IJRSI.2025.12020031

Received: 21 January 2025; Review: 29 January 2025; Accepted: 31 January 2025; Published: 05 March 2025

ABSTRACT

The concept of projective geometry has been studied by a number of mathematicians, though the initial focus was on Euclidean and non Euclidean geometries on the relationship between lines and points on a 3D projective space. This paper will focus on the dempotent elements in Z, for n=pqrs, specifically focusing on the triples, fano planes and order 15 projective structures. We shall count the number of the triples, fano planes and order 15 projective structures, and establish the relationship between them. It extends the results of projective geometry structure of Zn*,n=pqr.

Key Phrases: Primes, Triple Systems, Fano Planes.

INTRODUCTION

Projective geometry structure of various permutation groups has been also computed. Projective geometry structure for the group Zn*,n=pqr, has been computed This paper seeks to extent the established results for the group  We shall investigate the relationship between order 2 elements in the ring of units modulo , the triples, fano planes and order 15 geometric structures, n= pqrs.

Preliminaries

Fano plane

A fano plane is the smallest finite projective plane of order 2, containing 7 points and 7 lines that involves the set of integers and the modulus operations.

Triple system

A triple system in Zn* is denoted by (a1, a2, a3) where there exists ki > 1, i = 1, 2, 3, such that a2 ≡ 1(mod n) with a1a2a3(mod n), a1a3a2 (mod n) and a2a3a1 (mod n).

Euler phi function

Let a be an elements in Z. Then Euler’s phi function φ(a) denotes the number of positive integers ≤ a and relatively prime to a.

Given that a is a natural number with (a, n) = 1, aφ(n) ≡ 1 (mod n).

Chinese Remainder Theorem

Let n1, n2, . . . , n3 be pairwise co-prime positive integers and x1, x2, . . . , xk be arbitrary integers. The system of simultaneous congruence

a x1(mod n1)

a≡x2 (modn2)

a xk(mod nk)

has a unique solution modulo n = n1n2 . . . nk

Corollary (Chinese remainder theorem)

If n is an odd number with n =p_1^(k_1 ) p_2^(k_2 )…p_r^(k_r ) where r is the number of distinct primes of n and ki > 0 for 1 ≤ i r, then the equation x2 ≡ 1 (mod n) has exactly 2r distinct solutions (mod n).

Proof :

Suppose x^2≡1(modp_1^(k_1 ) p_2^(k_2 )…p_r^(k_r )), then p_1^(k_1 ) p_2^(k_2 )…(p_r^(k_r ))⁄x^2 -1. But since p_i^’ are distinct primes, then p_1^(k_1 ) p_2^(k_2 )…(p_r^(k_r ))⁄x^2 -1 only happens iff p_i^(k_i ) / x^2-1, for all 1≤i≤r. But each of the congruences has two solutions , i.e x=±1 (modp_i^(k_i )).

For each i, 1 ≤ i r choose yi = ±1 and utilize the linear congruence’s system;

x≡y_1^(k_1 )
x≡y_2^(k_2 )
.
.
.
.
.
.
.
x≡y_r^(k_r )                                                                    .

By the Chinese Remainder Theorem, this system has a unique solution  modp_1^(k_1 ) p_2^(k_2 )…p_r^(k_r ).

Since we have two choices for each yi (namely ±1), and we have r congruence’s, then the possible choices for y1 , … , yr are 2r.

Assuming that the 2r choices of x are not distinct (mod n), i.e. x1x2(mod n), then

x1 ≡ x2(modp_i^(k_i )) for all i. However, any two values of x are not congruent p_i^(k_i ) for at least one i. Therefore, the above system of linear congruence’s has 2r distinct solutions x(mod n). Any of the 2r choices satisfies x2 ≡ 1 (modp_i^(k_i )) for 1 ≤ i ≤ r. Hence, there are 2r distinct solutions to x2 ≡ 1(mod n)

Lemma

For x2 ≡ 1(mod n) and y2 ≡ 1(mod n), we have (xy)2 ≡ 1(mod n)

Proof:

(xy)2 = x2y2 ≡ 1 ∗ 1(mod n) = 1(mod n)

Lemma

Given x(xy) = x2y = 1 ∗ y y(mod n) and y(xy) = xy2 = x ∗ 1 ≡ x(mod n), then xy ≡ ±1(mod n) Hence, (xy)2 ≡ 1(mod n) if x2 ≡ 1(mod n) and y2 ≡ 1(mod n)

Proof:

From x2 ≡ 1(mod n) and y2 ≡ 1(mod n) we have, x ≡ ±1(mod n) and y ≡ ±1(mod n).

Hence, xy ≡ (±1)(±1)(mod n) = (±1)(mod n)

MAIN RESULTS

Theorem

Consider the set Z n = pqrs, where p, q, r, s are distinct odd primes. The equation x2 ≡ 1(mod n) has 16 distinct solutions.

Proof:

By The Chinese Remainder Theorem, there are 24 = 16 distinct solutions to the equation x2 ≡ 1(mod n), for n = pqrs, with p, q, r, s being odd prime numbers and p > q > r > s > 2. These solutions are of the form:

Case A: We have two trivial solutions that correspond to the following two items;

x ≡ 1(mod p) ≡ 1(mod q) ≡ 1(mod r) ≡ 1(mod s)

This is the unit solution, and

x ≡ −1(mod p) ≡ −1(mod q) ≡ −1(mod r) ≡ −1(mod ) s)

Case B: The non-trivial solutions correspond to the following;

x ≡ 1(mod p) ≡ −1(mod q) ≡ −1(mod r) ≡ 1(mod s)

x ≡ 1(mod p) ≡ 1(mod q) ≡ −1(mod r) ≡ −1(mod s)

x ≡ 1(mod p) ≡ −1(mod q) ≡ 1(mod r) ≡ −1(mod s)

x ≡ −1(mod p) ≡ 1(mod q) ≡ 1(mod r) ≡ 1(mod s)

x ≡ −1(mod p) ≡ −1(mod q) ≡ −1(mod r) ≡ 1(mod s)

x ≡ −1(mod p) ≡ 1(mod q) ≡ −1(mod r) ≡ −1(mod s)

x ≡ 1(mod p) ≡ 1(mod q) ≡ −1(mod r) ≡ 1(mod s)

x ≡ −1(mod p) ≡ −1(mod q) ≡ 1(mod r) ≡ −1(mod s)

x ≡ 1(mod p) ≡ −1(mod q) ≡ 1(mod r) ≡ 1(mod s)

x ≡ 1(mod p) ≡ 1(mod q) ≡ 1(mod r) ≡ −1(mod s)

x ≡ 1(mod p) ≡ −1(mod q) ≡ −1(mod r) ≡ −1(mod s)

x ≡ −1(mod p) ≡ 1(mod q) ≡ −1(mod r) ≡ 1(mod s)

 x ≡ −1(mod p) ≡ −1(mod q) ≡ 1(mod r) ≡ 1(mod s)

x ≡ −1(mod p) ≡ 1(mod q) ≡ 1(mod r) ≡ −1(mod s)

Table 1: Non-unit idempotents in Zn, for n = pqrs

p Q R R N values of x satisfying x2 ≡ 1(mod n)
3 5 7 11 1155 34 76 274 386 419 461 496 659 694 736
3 5 7 13 1365 64 118 209 274 391 454 664 701 911 974
3 5 7 17 1785 169 239 356 526 596 664 764 1021 1121 1189
3 5 11 13 2145 131 274 571 584 716 859 989 1156 1286 1429
3 5 11 17 2805 254 494 749 934 1121 1189 1376 1429 1616 1684
3 11 13 17 3315 664 766 781 1106 1429 1444 1546 1769 1871 1886
values of x satisfying x2 ≡ 1(mod n)
769 881 1079 1121 1154
1091 1156 1184 1301 1364
1258 1429 1546 1616 1784
1561 1574 1871 2014 2144
1871 2056 2311 2551 2804
2209 2549 2549 2651 3314

Example

Consider the 15 non unit solutions Z, n = 1155,, the triples are given by 34, 76, 274, 386, 419, 461, 496,659, 694, 736, 769, 881, 1079, 1121 and 1154. From these solutions, we make the following observations;

The 15 non unit solutions of the group generate 35 triples as follows. These triples are computed 9mod 1155).

34 ∗ 76 ≡ 274

34 ∗ 386 ≡ 419

34 ∗ 694 ≡ 496

34 ∗ 736 ≡ 769

34 ∗ 881 ≡ 1079

34 ∗ 1121 ≡ 1154

76 ∗ 386 ≡ 461

76 ∗ 419 ≡ 659

76 ∗ 496 ≡ 736

76 ∗ 694 ≡ 769

76 ∗ 881 ≡ 1121

76 ∗ 1079 ≡ 1154

274 ∗ 386 ≡ 659

274 ∗ 419 ≡ 461

274 ∗ 496 ≡ 769

274 ∗ 694 ≡ 736

274 ∗ 881 ≡ 1154

274 ∗ 1079 ≡ 1121

386 ∗ 496 ≡ 881

386 ∗ 694 ≡ 1079

386 ∗ 736 ≡ 1121

386 ∗ 769 ≡ 1154

419 ∗ 694 ≡ 881

419 ∗ 736 ≡ 1154

419 ∗ 769 ≡ 1121

461 ∗ 694 ≡ 1154

461 ∗ 736 ≡ 881

461 ∗ 769 ≡ 1079

496 ∗ 659 ≡ 1154

419 ∗ 496 ≡ 1079

496 ∗ 461 ≡ 1121

659 ∗ 694 ≡ 1121

659 ∗ 769 ≡ 881

659∗ 736 ≡ 1079

34∗ 461 ≡ 659

That;

34 ≡ 1(mod 3) ≡ −1(mod 5) ≡ −1(mod 7) ≡ 1(mod 11)

76 ≡ 1(mod 3) ≡ 1(mod 5) ≡ −1(mod 7) ≡ −1(mod 11)

274 ≡ 1(mod 3) ≡ −1(mod 5) ≡ 1(mod 7) ≡ −1(mod 11)

386 ≡ −1(mod 3) ≡ 1(mod 5) ≡ 1(mod 7) ≡ 1(mod 11)

419 ≡ −1(mod 3) ≡ −1(mod 5) ≡ −1(mod 7) ≡ 1(mod 11)

461 ≡ −1(mod 3) ≡ 1(mod 5) ≡ −1(mod 7) ≡ −1(mod 11)

496 ≡ 1(mod 3) ≡ 1(mod 5) ≡ −1(mod 7) ≡ 1(mod 11)

659 ≡ −1(mod 3) ≡ −1(mod 5) ≡ 1(mod 7) ≡ −1(mod 11)

694 ≡ 1(mod 3) ≡ −1(mod 5) ≡ 1(mod 7) ≡ 1(mod 11)

736 ≡ 1(mod 3) ≡ 1(mod 5) ≡ 1(mod 7) ≡ −1(mod 11)

769 ≡ 1(mod 3) ≡ −1(mod 5) ≡ −1(mod 7) ≡ −1(mod 11)

881 ≡ −1(mod 3) ≡ 1(mod 5) ≡ −1(mod 7) ≡ 1(mod 11)

1079 ≡ −1(mod 3) ≡ −1(mod 5) ≡ 1(mod 7) ≡ 1(mod 11)

1121 ≡ −1(mod 3) ≡ 1(mod 5) ≡ 1(mod 7) ≡ −1(mod 11)

1154 ≡ −1(mod 3) ≡ −1(mod 5) ≡ −1(mod 7) ≡ −1(mod 11)

This establishes theorem 3.3

To get a fano plane, we fix a triple, we premultiply the three points of the triple with a fourth point, we shall generate three more points. In total we shall have 7 points which forms a fano plane. Consider the 35 triples of Z, n= 1155. Repeating this procedure for all the 35 triples, we generate 15 fano planes as listed as follows;

34, 76, 274, 386, 419, 461, 659

34, 76, 274, 496, 694, 736, 769

34, 76, 274, 881, 1079, 1121, 1154

34, 386, 419, 496, 694, 881, 1079

34, 386, 419, 736, 769, 1121, 1154

34, 461, 659, 496, 694, 1121, 1154

34, 461, 659, 736, 769, 881, 1079

76, 386, 461, 496, 736, 881, 1121

76, 386, 461, 694, 769, 1079, 1154

76, 419, 659, 694, 769, 881, 1121

76, 419, 496, 659, 736, 1079, 1154

1274, 386, 496, 659, 769, 881, 1154

274, 386, 659, 694, 736, 1079, 1121

274, 419, 461, 694, 736, 881, 1154

274, 419, 461, 496, 769, 1079, 1121

Fitting triples into a Fano plane:

The first fano plane can be drawn as follows;

Fitting triples into a Fano plane:

All the other fano planes can be drawn in a similar manner.

Remarks

Every triple will appear in three distinct fano planes.

Order 15 Projective geometry structure of Z, n= pqrs

To get the order 15 geometric structure, we fix a fano plane, and pick a distinct eighth element and premultiply it with all the elements of the fixed fano plane, we get the required geometric structure.

Example

Consider the 15 non unit solutions of Z, n= 1155 given by 34, 76, 274, 386, 419, 461, 496, 659,

694, 736, 769, 881, 1079, 1121 and 1154. We have already seen that Z, n= 1155 has 35 triples and 15 fano planes. Consider the first fano plane given by 34,76,274,386,419,461,659. If we fix these elements and premultiply all by 694, we shall get the elements 34, 76, 274, 386, 419, 461,659 ,694,694,736,769,881,1079,1121,1154. Fixing any other fano plane and pre multiplying its elements with a distinct element from, we shall get the same result. Therefore, we have only one order 15 geometric structure given as follows; 34,76,274,386,419,461,659 ,694 ,694,736,769,881,1079,1121,1154

We can make the following observations;

Each fano plane appears once in the order 15 geometric structures

The order 15 projective geometric structure is made up of the 15 fano planes and 35 triples

CONCLUSIONS

We have established that Z, n= pqrs has 15 non unit solutions. These non unit solutions generate 35 triples. The 35 triples generate 15 fano planes which in turn generate only one order 15 projective geometric stricture.

REFERENCES

  1. Doyen, J., & Wilson, R. M. (1973). Embeddings of Steiner triple systems. Discrete Mathematics, 5(3), 229-239.
  2. Gikunda, D.K., & Kivunge, B. (2020). Triple system and Fano Plane structure in Zn. Inter- national Journal of Research and Innovation in Social Science, 5(4), 23-29.
  3. Hung, S. H., & Mendelsohn, N. S. (1973). Directed triple systems. Journal of Combinatorial Theory, Series A, 14(3), 310-318.
  4. Johnson, S. J., & Weller, S. R. (2001). Construction of low-density parity-check codes from Kirkman triple systems. In GLOBECOM’01. IEEE Global Telecommunications Conference (Cat. No. 01CH37270) (Vol. 2, pp. 970-974). IEEE.
  5. Lehmer, D. H., & Lehmer, E. (1974). A new factorization technique using quadratic forms. MATHEMATICS of computation, 28(126), 625-635.
  6. Lu, J. X. (1983). On Large Sets of Disjoint Steiner Triple Systems J. Comb. Theory, Ser. A, 34(2), 140-146.
  7. Ramo, M. (2011). On structural aspects of finite simple groups of Lie type (Doctoral disserta- tion).
  8. Skolem, T. (1959). Some Remarks On The Triple Systems Of Steiner. Mathematica Scandinavica, 6(2), 273-28

Article Statistics

Track views and downloads to measure the impact and reach of your article.

0

PDF Downloads

5 views

Metrics

PlumX

Altmetrics

Track Your Paper

Enter the following details to get the information about your paper

GET OUR MONTHLY NEWSLETTER