Synthesis of Derivatives of Heterobimetallic [Sn(II);Ti(IV)]-µ-oxo-isopropoxide with Schiff Bases

Authors

Jashmer Singh

DAV College (Lahore) Ambala City-134003, Haryana (India)

Article Information

DOI: 10.51244/IJRSI.2025.1210000195

Subject Category: Chemistry

Volume/Issue: 12/10 | Page No: 2197-2202

Publication Timeline

Submitted: 2025-11-02

Accepted: 2025-11-08

Published: 2025-11-15

Abstract

With an aim to enhance the stability and volatility of the heterometallic [Sn(II);Ti(IV)]-µ-oxo-isopropoxide a number of substitution reactions of the complex are carried out with different schiff bases viz Salicylidene aniline (HSB1), Salicylidene-o-toluidene (HSB2) and Salicylidene-p-chloroaniline (HSB3) have been performed in different molar ratios in refluxing benzene resulting in to the formation of products of the type [SnO2Ti2(O-i-Pr)5(SB)], [SnO2Ti2(O-i-Pr)4(SB)2], [SnO2Ti2(O-i-Pr)3(SB)3] and [SnO2Ti2(O-i-Pr)2(SB)4]. The schiff base derivatives have been characterized by elemental, liberated isopropanol and spectral analysis (IR, 1H , 13C NMR).

Keywords

Metal alkoxide, schiff base, Tin

Downloads

References

1. S. Mishra, S. Daniele. Chem. Rev., 115, 8379 (2015). [Google Scholar] [Crossref]

2. L. John, P. Sobota. Acc. Chem. Res., 47, 470 (2014). [Google Scholar] [Crossref]

3. G.A. Seisenbaeva, V.G. Kessler. Nanoscale, 6, 6229 (2014). [Google Scholar] [Crossref]

4. A. Devi. Coord. Chem. Rev., 257, 3332 (2013). [Google Scholar] [Crossref]

5. L.G. Bloor, C. J. Carmalt, D. Pugh. Coord. Chem. Rev., 255, 1293 (2011). [Google Scholar] [Crossref]

6. S. Mishra, S. Daniele, L.G. Hubert-Pfalzgraf. Chem. Soc. Rev., 36, 1770 (2007). [Google Scholar] [Crossref]

7. L.G. Hubert-Pfalzgraf. J. Mater. Chem., 14, 3113 (2004). [Google Scholar] [Crossref]

8. L.G. Hubert-Pfalzgraf. Inorg. Chem. Commun., 6, 102 (2003). [Google Scholar] [Crossref]

9. S. Mishra, E. Jeanneau, S. Mangematin, H. Chermette, M. Poor Kalhor, G. Bonnefont, G. Fantozzi, S. Le Floch, S. Pailhes, S. Daniele. Dalton Trans., 44, 6848 (2015). [Google Scholar] [Crossref]

10. Y. Chen, S. Mishra, G. Ledoux, E. Jeanneau, M. Daniel, J. Zhang, S. Daniele. Chem. Asian J., 9, 2415 (2014). [Google Scholar] [Crossref]

11. Z. Wei, A.S. Filatov, E.V. Dikarev. J. Am. Chem. Soc., 135, 12216 (2013). [Google Scholar] [Crossref]

12. S.Mishra, V. Mendez, E. Jeanneau, V. Caps, S. Daniele. Eur. J. Inorg. Chem., 500 (2013). [Google Scholar] [Crossref]

13. S. Mishra, G. Ledoux, E. Jeanneau, S. Daniele, M.-F. Joubert. Dalton Trans., 41, 1490 (2012). [Google Scholar] [Crossref]

14. A. Navulla, A.A. Tsirlin, A.M. Abakumov, R.V. Shpanchenko, H. Zhang, E.V. Dikarev. J. Am. Chem. Soc., 133, 602 (2011). [Google Scholar] [Crossref]

15. S. Mishra, E. Jeanneau, S. Daniele, V. Mendez. Dalton Trans., 39, 7440 (2010). [Google Scholar] [Crossref]

16. S. Mishra, E. Jeanneau, M.-H. Berger, J.-F. Hochepied, S. Daniele. Inorg. Chem., 49, 11184 (2010). [Google Scholar] [Crossref]

17. S. Mishra, S. Daniele, G. Ledoux, E. Jeanneau, M.-F. Joubert. Chem. Commun., 46, 3756 (2010). [Google Scholar] [Crossref]

18. S. Mishra, J. Zhang, L.G. Hubert-Pfalzgraf, D. Luneau, E. Jeanneau. Eur. J. Inorg. Chem., 602 (2007). [Google Scholar] [Crossref]

19. D.C. Bradley, R.C. Mehrotra, I.P. Rothwell, A. Singh, Alkoxo and Aryloxo derivatives of Metals, Academic Press, New York (2001). [Google Scholar] [Crossref]

20. N.Ya. Turova, E.P. Turevskaya, V.G. Kessler, M.I. Yanovskaya, The Chemistry of Metal Alkoxide, Kluwer Academic Publishers, Boston (2002). [Google Scholar] [Crossref]

21. L.G. Bloor, C.J. Carmalt, D. Pugh. Coord. Chem. Rev., 255, 1293 (2011). [Google Scholar] [Crossref]

22. V.G. Kessler. J. Sol-Gel Sci. Technol., 51, 264 (2009). [Google Scholar] [Crossref]

23. S. Szafert, L. John, P. Sobota. Dalton Trans., 6509 (2008). [Google Scholar] [Crossref]

24. R.C. Mehrotra, A. Singh. Polyhedron, 17, 689 (1998). [Google Scholar] [Crossref]

25. R.C. Mehrotra, A. Singh. Prog. Inorg. Chem., 46, 239 (1997). [Google Scholar] [Crossref]

26. R.C. Mehrotra, A. Singh, S. Sogani. Chem. Rev., 94, 1643 (1994). [Google Scholar] [Crossref]

27. R.C. Mehrotra, A. Singh, S. Sogani. Chem. Soc. Rev., 23, 215 (1994). [Google Scholar] [Crossref]

28. R.C. Mehrotra, A. Singh, U.M. Tripathi. Chem. Rev., 91, 1287 (1991). [Google Scholar] [Crossref]

29. K.G. Kaulton, L.H. Hubert-Pfalzgraf. Chem. Rev., 90, 969 (1990). [Google Scholar] [Crossref]

30. A. Saini, D. Singh, V. Dhayal, Structural and optical properties of titania nanostructures obtained from oxime-modified titanium(IV) precursor, 10.1080/ 14328917.2021.1963577 26 (2021) 276–284. [Google Scholar] [Crossref]

31. J.L. Sharma, A. Saini, V. Dhayal, Chemically modified germanium(IV) alkoxides: molecular precursors for nano-sized germania, 10.1080/ 14328917.2019.1612603 24 (2019) 123–128. [Google Scholar] [Crossref]

32. A. Saini, D. Singh, B.L. Choudhary, V. Dhayal, Low temperature mullitization of oxime- modified aluminosiloxane by sol-gel process, 10.1080/ 14328917.2021.1903702 26 (2021) 91–99. [Google Scholar] [Crossref]

33. U. Schubert, Chemical modification of titanium alkoxides for sol–gel processing, J. Mater. Chem 15, 3701–3715 (2005). [Google Scholar] [Crossref]

34. K.J. Klabunde, J.V.Stark, O.Koper, C.Mohs, D.G.Park, S.Decker, Y.Jiang, I.Lagadic and D.Zhang, J. Phys. Chem., 100, 12142 (1996) . [Google Scholar] [Crossref]

35. O.Koper, I.Lagadic and K.J.Klabunde, Chem. Mater., 9, 838 (1997). [Google Scholar] [Crossref]

36. M.H.Chisholm, J. Organomet. Chem., 334, 77 (1987). [Google Scholar] [Crossref]

37. C. T. Lynch, K.S. Masdiyanni, J. S. Smith and W. J. Grawford, Anal. Chem., 36, 2332, (1964). [Google Scholar] [Crossref]

38. V. A. Koznov, N. I. Kuzlova, N. Y. Turova and Y.S. Nekrasov, Zh. Neorg. Khim., 24, 1526, (1979). [Google Scholar] [Crossref]

39. H. K. Sharma and P. N. Kapoor, Indian J. Chem., 43A, 566, (2004). [Google Scholar] [Crossref]

40. H.K. Sharma, Jashmer Singh, Rajesh Kumar and Amardeep; J.Indian, Chem.Soc.; 90,669-676 (2013). [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles