Ash Management in Indian Power Plants: Current Status, Challenges and Future Directions
Authors
Department of Basic Science, NSHM Knowledge Campus Durgapur, West Bengal-713212 (India)
Department of Chemistry, NTPC Vindhyachal, Singrauli, Madhya Pradesh-486885 (India)
Department of Basic Science, NSHM Knowledge Campus Durgapur, West Bengal-713212 (India)
Article Information
DOI: 10.51244/IJRSI.2025.12110115
Subject Category: Chemistry
Volume/Issue: 12/11 | Page No: 1293-1302
Publication Timeline
Submitted: 2025-12-03
Accepted: 2025-12-09
Published: 2025-12-18
Abstract
Coal-fired thermal power plants in India generate large quantities of fly ash and bottom ash, creating significant environmental and operational challenges while also offering opportunities for resource recovery. This present manuscript presents a comprehensive overview of ash composition, mineral phases, and physicochemical characteristics, drawing on advanced analytical techniques such as XRD, XRF, SEM, particle-size analysis, and elemental mapping to illustrate the variability and complexity of fly ash generated across different combustion systems. The discussion highlights both the environmental risks associated with improper ash disposal—such as groundwater contamination, particulate pollution, and heavy-metal leaching—and the growing potential for transforming fly ash into value-added materials. Applications including zeolite synthesis, water-treatment adsorbents, supplementary cementitious materials, ceramics, alum production, and agricultural amendments are examined with support from recent literature. By synthesizing developments in characterization, utilization, and environmental assessment, the present manuscript emphasizes the need for integrated ash management strategies that align scientific understanding with sustainable industrial practices.
Keywords
Fly ash; Bottom ash; Ash management; Dry ash handling; Beneficiation; Fly ash utilization
Downloads
References
1. S. Kar and P. Paul, Cleaner Mater., 2023, 9, 100202. [Google Scholar] [Crossref]
2. A. Roy, S. Mukherjee and B. Das, Environ. Pollut., 2023, 319, 120993. [Google Scholar] [Crossref]
3. J. Ma, X. Qi, W. Song, H. Li and R. Zhang, J. Hazard. Mater., 2024, 455, 131215. [Google Scholar] [Crossref]
4. V. Kumar and R. Singh, Atmos. Environ., 2024, 286, 119265. [Google Scholar] [Crossref]
5. S. Mohapatra and R. Patel, Resour. Conserv. Recycl. Adv., 2023, 19, 200217. [Google Scholar] [Crossref]
6. X. Li, Y. Zhang, Z. Wang and N. Liu, Powder Technol., 2024, 420, 118376. [Google Scholar] [Crossref]
7. P. Sharma and M. Chandel, J. Clean. Prod., 2023, 385, 135746. [Google Scholar] [Crossref]
8. Dai, S. et al., 2012. Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, 90, 72–99. [Google Scholar] [Crossref]
9. Khairul Nizar Ismail, Kamarudin Hussin and Mohd Sobri Idris, J. Nucl. Relat. Technol., 2007, 4, 47–51. [Google Scholar] [Crossref]
10. S. V. Vassilev and C. G. Vassileva, Fuel, 2007, 86, 1490–1512. [Google Scholar] [Crossref]
11. IOP Conf. Ser.: Mater. Sci. Eng., 2017, 263, 032010. [Google Scholar] [Crossref]
12. A. Bhatt et al., Case Stud. Constr. Mater., 2019, 11, e00263. [Google Scholar] [Crossref]
13. J. C. Hower, A. S. Trimble and C. F. Eble, Fuel Process. Technol., 2001, 73, 37–58. [Google Scholar] [Crossref]
14. S. K. Nath, S. Maitra, S. Mukherjee and S. Kumar, Constr. Build. Mater., 2016, 111, 758–765. [Google Scholar] [Crossref]
15. Z. Wang et al., Microporous Mesoporous Mater., 2016, 222, 226–234. [Google Scholar] [Crossref]
16. K. Kruse et al., CTR Tech. Rep., 2012, 6648(1). [Google Scholar] [Crossref]
17. J. M. Veranth et al., Fuel, 2000, 79, 1067–1075. [Google Scholar] [Crossref]
18. M. Cyr et al., Cem. Concr. Res., 2001, 34, 342–350. [Google Scholar] [Crossref]
19. R. T. Chancey, PhD Thesis, 2008. [Google Scholar] [Crossref]
20. N. Wang et al., J. Hazard. Mater., 2020, 396, 122725. [Google Scholar] [Crossref]
21. P. Brown, T. Jones and K. BéruBé, Environ. Pollut., 2011, 159, 3324–3333. [Google Scholar] [Crossref]
22. B. Rubio et al., J. Environ. Manag., 2008, 88, 1562–1570. [Google Scholar] [Crossref]
23. M. Sow et al., Fuel, 2015, 162, 224–233. [Google Scholar] [Crossref]
24. A. Sambangi and E. J. M. T. P. Arunakanthi, Mater. Today Proc., 2021, 45, 6687–6693. [Google Scholar] [Crossref]
25. O. Dere Ozdemir and S. Piskin, Waste Biomass Valor., 2019, 10, 143–154. [Google Scholar] [Crossref]
26. G. G. Hollman, G. Steenbruggen and M. Janssen-Jurkovičová, Fuel, 1999, 78, 1225–1230. [Google Scholar] [Crossref]
27. X. Querol et al., Int. J. Coal Geol., 2002, 50, 413–423. [Google Scholar] [Crossref]
28. A. Singer and V. Berkgaut, Appl. Clay Sci., 1995, 10, 471–478. [Google Scholar] [Crossref]
29. X. Guo et al., RSC Adv., 2024, 14, 21342–21354. [Google Scholar] [Crossref]
30. X. Guo et al., RSC Adv., 2025, 15, 35158–35174. [Google Scholar] [Crossref]
31. A. Eteba, M. Bassyouni and M. Saleh, Int. J. Environ. Sci. Technol., 2023, 20, 7589–7602. [Google Scholar] [Crossref]
32. G. Buema et al., Water, 2021, 13, 207. [Google Scholar] [Crossref]
33. W. Jadaa, Clean Technol., 2024, 6, 221–279. [Google Scholar] [Crossref]
34. D. V. Trajković et al., Separations, 2025, 12, 299. [Google Scholar] [Crossref]
35. L. Sawunyama et al., Discover Nano, 2025, 20, 1. [Google Scholar] [Crossref]
36. X. Ren et al., RSC Adv., 2024, 14, 12580–12592. [Google Scholar] [Crossref]
37. V. Saxena et al., Water Air Soil Pollut., 2025, 236, 731. [Google Scholar] [Crossref]
38. D. K. Nayak et al., Cleaner Mater., 2022, 6, 100143. [Google Scholar] [Crossref]
39. B. K. Shukla et al., Mater. Today, Proc., 2023, 93, 257–264. [Google Scholar] [Crossref]
40. M. Erol et al., Fuel, 2008, 87, 1334–1340. [Google Scholar] [Crossref]
41. Y. He et al., Ceram. Int., 2005, 120, 265–269. [Google Scholar] [Crossref]
42. Z. Yao et al., J. Hazard. Mater., 2015, 141, 105–121. [Google Scholar] [Crossref]
43. C. Kniess et al., J. Non-Cryst. Solids, 2007, 353, 4819–4822. [Google Scholar] [Crossref]
44. Z. Yao et al., J. Eur. Ceram. Soc., 2012, 21, 877–881. [Google Scholar] [Crossref]
45. S. Mandal and S. Mohanta, Int. J. Sci. Res. Arch., 2024, 5, 495–502. [Google Scholar] [Crossref]
46. J. Zhang, L. Wang and M. Chen, Adv. Mater. Res., 2013, 734–737, 1551–1556. [Google Scholar] [Crossref]
47. X. Li et al., RSC Adv., 2022, 12, 37626–37638. [Google Scholar] [Crossref]
48. H. C. Park, Y. J. Park and R. Stevens, Mater. Sci. Eng. A, 2004, 367, 201–207. [Google Scholar] [Crossref]
49. K. M. Spark and R. S. Swift, Aust. J. Soil Res., 2008, 46, 578–584. [Google Scholar] [Crossref]
50. R. M. Hamidi et al., RSC Adv., 2022, 12, 33187–33199. [Google Scholar] [Crossref]
51. S. Pradhan et al., Int. J. Plant Soil Sci., 2025, 37, 900–910. [Google Scholar] [Crossref]
52. Daswell, fly ash properties and uses (https://daswell.com/blogs/fly-ash-properties-source-advantages-uses/). [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- Green Synthesis of Cobalt Oxide/Gold (Coo/Au) Bimetallic Nanoparticles Using Sinapinic Acid: A Comprehensive Study
- Advances in Solar Cell Technologies: A Comprehensive Review of Material Synthesis, Structural Properties, Efficiency and Diverse Applications
- Thermal Decomposition of Co-Fe-Cr-Citrate Complex Via Structural and Spectral Study
- Surface Activity and Thermodynamic Assessment of Surfactants Derived from Oreochromis Niloticus Oil (Nile Tilapia Fish)
- Green Synthesis of Robust Metal-Organic Frameworks: A Sustainable Approach for Advanced Applications